How to Interface Your ROS 2 Robot with Alexa Using Flask and Python

👉 How to Interface Your ROS 2 Robot with Alexa Using Flask and Python 

In this hands-on lab, you’ll learn how to create a Python web server that acts as a bridge between an Alexa Skill and your ROS 2 robot. By using Flask and the Alexa Skills Kit SDK, you will interpret voice commands sent from the Alexa cloud and turn them into ROS 2 actions. This guide completes the integration process started in previous tutorials, giving your robot real-time voice control capability. 

1. Set Up the Project Directory 

Create a new project folder and a Python file named `alexa_server.py`. Inside this file, we’ll define the logic for receiving and handling Alexa requests. 
 
Install the necessary packages: 
`pip install flask flask-ask` 

2. Import Required Libraries 

Begin your Python file by importing Flask, Flask-Ask, and ROS 2 libraries: 
 
“`python 
from flask import Flask 
from flask_ask import Ask, statement 
import rclpy 
from rclpy.node import Node 
# import your custom ROS 2 client interface 
“` 

  • 3. Initialize Flask and ROS 2 

    Set up the basic Flask app and initialize ROS 2 communication: 
     
    “`python 
    app = Flask(__name__) 
    ask = Ask(app, ‘/alexa’) 
     
    rclpy.init() 
    # Create your ROS 2 node and action client instance here 
    “` 

  • 4. Define Request Handlers 

    Alexa Skills interact with webhooks by sending specific request types (e.g., LaunchRequest, IntentRequest). 
     
    Define a handler to respond when the skill is launched: 
     
    “`python 
    @ask.launch 
    def launch_skill(): 
        return statement(‘Hello! Your robot is ready.’) 
    “` 
     
    Now create one intent handler for each robot command: 
     
    “`python 
    @ask.intent(‘WakeIntent’) 
    def wake(): 
        # Send ROS 2 wake command here 
        return statement(‘Robot waking up.’) 
    “` 

  • 5. Connect ROS 2 Logic to the Server 

    Inside each intent function, integrate ROS 2 code to control the robot. This may include publishing messages, sending goals to an action server, or calling services. 
     
    Make sure the ROS 2 node and executor are running in a separate thread if needed, so Flask remains responsive. 

  • 6. Run and Test the Server 

    Start the server by running: 
    `python3 alexa_server.py` 
     
    Ensure ngrok is running and forwarding requests to the correct port (usually 5000). 
     
    You can now test the complete Alexa → ngrok → Flask → ROS 2 flow. 

  • 7. Conclusion 

    You’ve now built a custom Python server that connects Alexa with your ROS 2 robot in real-time using voice. This closes the loop in the cloud-to-robot interaction pipeline. 
     
    From here, you can expand the project by adding more intents, making the ROS 2 interface more robust, or deploying the system on an embedded platform. 

				
					console.log( 'Code is Poetry' );yubboiib
				
			
en_US